NTD3055L104,
 NTDV3055L104

MOSFET - Power, N-Channel, Logic Level, DPAK/IPAK

12 A, 60 V

Designed for low voltage, high speed switching applications in power supplies, converters and power motor controls and bridge circuits.

Features

- Lower $\mathrm{R}_{\mathrm{DS}(o n)}$
- Lower $\mathrm{V}_{\mathrm{DS}(o n)}$
- Tighter V_{SD} Specification
- Lower Diode Reverse Recovery Time
- Lower Reverse Recovery Stored Charge
- NTDV and STDV Prefixes for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

Typical Applications

- Power Supplies
- Converters
- Power Motor Controls
- Bridge Circuits

MAXIMUM RATINGS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	$\mathrm{V}_{\text {DSS }}$	60	Vdc
Drain-to-Gate Voltage ($\mathrm{R}_{\mathrm{GS}}=10 \mathrm{M} \Omega$)	$\mathrm{V}_{\text {DGR }}$	60	Vdc
Gate-to-Source Voltage, Continuous - Non-Repetitive ($\mathrm{t}_{\mathrm{p}} \leq 10 \mathrm{~ms}$)	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}} \\ & \mathrm{~V}_{\mathrm{GS}} \end{aligned}$	$\begin{aligned} & \pm 15 \\ & \pm 20 \end{aligned}$	Vdc
Drain Current - Continuous @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ - Continuous @ $T_{A}=100^{\circ} \mathrm{C}$ - Single Pulse ($\mathrm{t}_{\mathrm{p}} \leq 10 \mu \mathrm{~s}$)	$\begin{aligned} & \mathrm{I}_{\mathrm{D}} \\ & \mathrm{I}_{\mathrm{D}} \\ & \mathrm{I}_{\mathrm{DM}} \end{aligned}$	$\begin{aligned} & 12 \\ & 10 \end{aligned}$	Adc Apk
```Total Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) Derate above \(25^{\circ} \mathrm{C}\) Total Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (Note 1) Total Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (Note 2)```	$\mathrm{P}_{\mathrm{D}}$	$\begin{gathered} \hline 48 \\ 0.32 \\ 2.1 \\ 1.5 \end{gathered}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~W} /{ }^{\circ} \mathrm{C} \\ \mathrm{~W} \\ \mathrm{~W} \end{gathered}$
Operating and Storage Temperature Range	$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$	$\begin{gathered} -55 \text { to } \\ +175 \end{gathered}$	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \hline \text { Single Pulse Drain-to-Source Avalanche } \\ & \text { Energy-Starting } T_{J}=25^{\circ} \mathrm{C} \\ & \left(\mathrm{~V}_{\mathrm{DD}}=25 \mathrm{Vdc}, \mathrm{~V}_{G S}=5.0 \mathrm{Vdc}, \mathrm{~L}=1.0 \mathrm{mH}\right. \\ & \left.\mathrm{I}_{\mathrm{L}(\mathrm{pk})}=11 \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=60 \mathrm{Vdc}\right) \\ & \hline \end{aligned}$	$\mathrm{E}_{\text {AS }}$	61	mJ
Thermal Resistance, - Junction-to-Case   - Junction-to-Ambient (Note 1)   - Junction-to-Ambient (Note 2)	$\begin{aligned} & \hline \mathrm{R}_{\text {QJC }} \\ & \mathrm{R}_{\text {QJA }} \\ & \mathrm{R}_{\text {} \mathrm{JJA}} \end{aligned}$	$\begin{aligned} & \hline 3.13 \\ & 71.4 \\ & 100 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Lead Temperature for Soldering Purposes, $1 / 8^{\prime \prime}$ from case for 10 seconds	$\mathrm{T}_{\mathrm{L}}$	260	C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. When surface mounted to an FR4 board using 1" pad size, (Cu Area 1.127 in 2 ).


## ON Semiconductor ${ }^{\circledR}$

www.onsemi.com


## MARKING DIAGRAMS \& PIN ASSIGNMENTS



* The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package, the front side assembly code may be blank.


## ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

## NTD3055L104, NTDV3055L104

2. When surface mounted to an FR4 board using the minimum recommended pad size, (Cu Area 0.412 in2 ).

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
$\begin{aligned} & \text { Drain-to-Source Breakdown Voltage (Note 3) } \\ & \left(V_{G S}=0 \text { Vdc, } I_{D}=250 \mu \mathrm{Adc}\right) \\ & \text { Temperature Coefficient (Positive) } \end{aligned}$	$\mathrm{V}_{\text {(BR) }{ }^{\text {dss }}}$		$\begin{gathered} 70 \\ 62.9 \end{gathered}$		$\begin{gathered} \mathrm{Vdc} \\ \mathrm{mV} /{ }^{\circ} \mathrm{C} \end{gathered}$
$\begin{aligned} & \text { Zero Gate Voltage Drain Current } \\ & \left(\mathrm{V}_{\mathrm{DS}}=60 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{DS}}=60 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C}\right) \end{aligned}$	${ }^{\text {DSS }}$	-	-	$\begin{gathered} 1.0 \\ 10 \end{gathered}$	$\mu \mathrm{Adc}$
Gate-Body Leakage Current ( $\left.\mathrm{V}_{\mathrm{GS}}= \pm 15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{DS}}=0 \mathrm{Vdc}\right)$	IGSS	-	-	$\pm 100$	nAdc

ON CHARACTERISTICS (Note 3)

```Gate Threshold Voltage (Note 3) \(\left(\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{Adc}\right)\) Threshold Temperature Coefficient (Negative)```	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	1.0	$\begin{aligned} & 1.6 \\ & 4.2 \end{aligned}$		Vdc   $\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Static Drain-to-Source On-Resistance (Note 3) $\left(\mathrm{V}_{\mathrm{GS}}=5.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=6.0 \mathrm{Adc}\right)$	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	-	89	104	$\mathrm{m} \Omega$
$\begin{aligned} & \text { Static Drain-to-Source On-Voltage (Note } 3 \text {) } \\ & \left(V_{G S}=5.0 \mathrm{Vdc}, I_{D}=12 \mathrm{Adc}\right) \\ & \left(\mathrm{V}_{\mathrm{GS}}=5.0 \mathrm{Vdc}, I_{D}=6.0 \mathrm{Adc}, T_{J}=150^{\circ} \mathrm{C}\right) \end{aligned}$	$\mathrm{V}_{\mathrm{DS} \text { (on) }}$		$\begin{aligned} & 0.98 \\ & 0.86 \end{aligned}$		Vdc
Forward Transconductance (Note 3) ($\mathrm{V}_{\mathrm{DS}}=8.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=6.0 \mathrm{Adc}$)	gFS	-	9.1	-	mhos

DYNAMIC CHARACTERISTICS

Input Capacitance	$\begin{gathered} \left(\mathrm{V}_{\mathrm{DS}}=25 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc},\right. \\ \mathrm{f}=1.0 \mathrm{MHz}) \end{gathered}$	$\mathrm{C}_{\text {iss }}$	-	316	440	pF
Output Capacitance		$\mathrm{C}_{\text {oss }}$	-	105	150	
Transfer Capacitance		$\mathrm{C}_{\text {rss }}$	-	35	70	

SWITCHING CHARACTERISTICS (Note 4)

Turn-On Delay Time	$\left(\mathrm{V}_{\mathrm{DD}}=30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=12 \mathrm{Adc}\right.$, $\mathrm{V}_{\mathrm{GS}}=5.0 \mathrm{Vdc}, \mathrm{R}_{\mathrm{G}}=9.1 \Omega$) (Note 3)	$\mathrm{t}_{\text {d(on) }}$	-	9.2	20	ns
Rise Time		t_{r}	-	104	210	
Turn-Off Delay Time		$\mathrm{t}_{\mathrm{d} \text { (off) }}$	-	19	40	
Fall Time		t_{f}	-	40.5	80	
Gate Charge	$\begin{gathered} \left(\mathrm{V}_{\mathrm{DS}}=48 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=12 \mathrm{Adc},\right. \\ \left.\mathrm{V}_{\mathrm{GS}}=5.0 \mathrm{Vdc}\right)(\text { Note } 3) \end{gathered}$	$\mathrm{Q}_{\text {T }}$	-	7.4	20	nC
		Q_{1}	-	2.0	-	
		Q_{2}	-	4.0	-	

SOURCE-DRAIN DIODE CHARACTERISTICS

Forward On-Voltage	(IS $=12$ Adc, $\left.\mathrm{V}_{\mathrm{GS}}=0 \mathrm{Vdc}\right)($ Note 3) $\left(\mathrm{I}_{\mathrm{S}}=12 \mathrm{Adc}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}\right)$	$V_{\text {SD }}$	-	$\begin{aligned} & 0.95 \\ & 0.82 \end{aligned}$	1.2	Vdc
Reverse Recovery Time	$\begin{aligned} & \left(\mathrm{I}_{\mathrm{S}}=12 \mathrm{Adc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc},\right. \\ & \left.\mathrm{d} \mathrm{l}_{\mathrm{S}} / \mathrm{dt}=100 \mathrm{~A} / \mathrm{\mu s}\right)(\text { Note } 3) \end{aligned}$	$\mathrm{t}_{\text {rr }}$	-	35	-	ns
		t_{a}	-	21	-	
		t_{b}	-	14	-	
Reverse Recovery Stored Charge		$\mathrm{Q}_{\text {RR }}$	-	0.04	-	$\mu \mathrm{C}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
3. Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2 \%$.
4. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

Figure 1. On-Region Characteristics

Figure 3. On-Resistance versus
Gate-to-Source Voltage

Figure 5. On-Resistance Variation with Temperature

Figure 2. Transfer Characteristics

I_{D}, DRAIN CURRENT (AMPS)
Figure 4. On-Resistance versus Drain Current and Gate Voltage

Figure 6. Drain-to-Source Leakage Current versus Voltage

NTD3055L104, NTDV3055L104

POWER MOSFET SWITCHING

Switching behavior is most easily modeled and predicted by recognizing that the power MOSFET is charge controlled. The lengths of various switching intervals ($\Delta \mathrm{t})$ are determined by how fast the FET input capacitance can be charged by current from the generator.
The published capacitance data is difficult to use for calculating rise and fall because drain-gate capacitance varies greatly with applied voltage. Accordingly, gate charge data is used. In most cases, a satisfactory estimate of average input current $\left(\mathrm{I}_{\mathrm{G}(\mathrm{AV})}\right)$ can be made from a rudimentary analysis of the drive circuit so that
$\mathrm{t}=\mathrm{Q} / \mathrm{I}_{\mathrm{G}}(\mathrm{AV})$
During the rise and fall time interval when switching a resistive load, V_{GS} remains virtually constant at a level known as the plateau voltage, $\mathrm{V}_{\text {SGP }}$. Therefore, rise and fall times may be approximated by the following:
$\mathrm{t}_{\mathrm{r}}=\mathrm{Q}_{2} \times \mathrm{R}_{\mathrm{G}} /\left(\mathrm{V}_{\mathrm{GG}}-\mathrm{V}_{\mathrm{GSP}}\right)$
$\mathrm{t}_{\mathrm{f}}=\mathrm{Q}_{2} \times \mathrm{R}_{\mathrm{G}} / \mathrm{V}_{\mathrm{GSP}}$
where
$\mathrm{V}_{\mathrm{GG}}=$ the gate drive voltage, which varies from zero to V_{GG}
$\mathrm{R}_{\mathrm{G}}=$ the gate drive resistance
and Q_{2} and $\mathrm{V}_{\mathrm{GSP}}$ are read from the gate charge curve.
During the turn-on and turn-off delay times, gate current is not constant. The simplest calculation uses appropriate values from the capacitance curves in a standard equation for voltage change in an RC network. The equations are:

The capacitance $\left(\mathrm{C}_{\mathrm{iss}}\right)$ is read from the capacitance curve at a voltage corresponding to the off-state condition when calculating $\mathrm{t}_{\mathrm{d}(\mathrm{on})}$ and is read at a voltage corresponding to the on-state when calculating $\mathrm{t}_{\mathrm{d}(\text { off })}$.

At high switching speeds, parasitic circuit elements complicate the analysis. The inductance of the MOSFET source lead, inside the package and in the circuit wiring which is common to both the drain and gate current paths, produces a voltage at the source which reduces the gate drive current. The voltage is determined by Ldi/dt, but since di/dt is a function of drain current, the mathematical solution is complex. The MOSFET output capacitance also complicates the mathematics. And finally, MOSFETs have finite internal gate resistance which effectively adds to the resistance of the driving source, but the internal resistance is difficult to measure and, consequently, is not specified.
The resistive switching time variation versus gate resistance (Figure 9) shows how typical switching performance is affected by the parasitic circuit elements. If the parasitics were not present, the slope of the curves would maintain a value of unity regardless of the switching speed. The circuit used to obtain the data is constructed to minimize common inductance in the drain and gate circuit loops and is believed readily achievable with board mounted components. Most power electronic loads are inductive; the data in the figure is taken with a resistive load, which approximates an optimally snubbed inductive load. Power MOSFETs may be safely operated into an inductive load; however, snubbing reduces switching losses.

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)
Figure 7. Capacitance Variation

Figure 8. Gate-To-Source and Drain-To-Source Voltage versus Total Charge

Figure 9. Resistive Switching Time Variation versus Gate Resistance

DRAIN-TO-SOURCE DIODE CHARACTERISTICS

Figure 10. Diode Forward Voltage versus Current

SAFE OPERATING AREA

The Forward Biased Safe Operating Area curves define the maximum simultaneous drain-to-source voltage and drain current that a transistor can handle safely when it is forward biased. Curves are based upon maximum peak junction temperature and a case temperature $\left(\mathrm{T}_{\mathrm{C}}\right)$ of $25^{\circ} \mathrm{C}$. Peak repetitive pulsed power limits are determined by using the thermal response data in conjunction with the procedures discussed in AN569, "Transient Thermal Resistance General Data and Its Use."

Switching between the off-state and the on-state may traverse any load line provided neither rated peak current (I_{DM}) nor rated voltage ($\mathrm{V}_{\mathrm{DSS}}$) is exceeded and the transition time $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right)$ do not exceed $10 \mu \mathrm{~s}$. In addition the total power averaged over a complete switching cycle must not exceed $\left(T_{J(M A X)}-T_{C}\right) /\left(R_{\theta J C}\right)$.

A Power MOSFET designated E-FET can be safely used in switching circuits with unclamped inductive loads. For
reliable operation, the stored energy from circuit inductance dissipated in the transistor while in avalanche must be less than the rated limit and adjusted for operating conditions differing from those specified. Although industry practice is to rate in terms of energy, avalanche energy capability is not a constant. The energy rating decreases non-linearly with an increase of peak current in avalanche and peak junction temperature.

Although many E-FETs can withstand the stress of drain-to-source avalanche at currents up to rated pulsed current (I_{DM}), the energy rating is specified at rated continuous current (I_{D}), in accordance with industry custom. The energy rating must be derated for temperature as shown in the accompanying graph (Figure 12). Maximum energy at currents below rated continuous I_{D} can safely be assumed to equal the values indicated.

SAFE OPERATING AREA

Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 12. Maximum Avalanche Energy versus Starting Junction Temperature

Figure 13. Thermal Response

Figure 14. Diode Reverse Recovery Waveform

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
NTD3055L104G	$\begin{gathered} \text { DPAK } \\ \text { (Pb-Free) } \end{gathered}$	75 Units / Rail
NTD3055L104-1G	$\begin{gathered} \text { IPAK } \\ \text { (Pb-Free) } \end{gathered}$	75 Units / Rail
NTD3055L104T4G	$\begin{gathered} \text { DPAK } \\ \text { (Pb-Free) } \end{gathered}$	2500 / Tape \& Reel
NTDV3055L104-1G	$\begin{gathered} \text { IPAK } \\ \text { (Pb-Free) } \end{gathered}$	75 Units / Rail
NTDV3055L104T4G*	DPAK (Pb-Free)	2500 / Tape \& Reel
STDV3055L104T4G*	DPAK (Pb-Free)	2500 / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NTDV and STDV Prefixes for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

NTD3055L104, NTDV3055L104

PACKAGE DIMENSIONS

DPAK (SINGLE GAUGE)

CASE 369C
ISSUE F

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

IPAK
CASE 369D
ISSUE C

notes:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
A	0.235	0.245	5.97	6.35		
B	0.250	0.265	6.35	6.73		
C	0.086	0.094	2.19	2.38		
D	0.027	0.035	0.69	0.88		
E	0.018	0.023	0.46	0.58		
F	0.037	0.045	0.94			
G	0.090		BSC	2.29		BSC
H	0.034	0.040	0.87			
J	0.018	0.023	0.46	1.01		
K	0.350	0.380	8.89	9.65		
R	0.180	0.215	4.45	5.45		
S	0.025	0.040	0.63	1.01		
V	0.035	0.050	0.89	1.27		
\mathbf{Z}	0.155	---	3.93	---		

STYLE 2:
PIN 1. GATE
2. DRAIN
3. SOURCE
4. DRAIN

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderli@@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) D2294UK 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0\#T2 RJK60S5DPK-M0\#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3

